7.1-B- Ratios of perimeters and areas

k	k^{2}	k^{3}
2	25	
$\frac{2}{7}$		27
	$\underline{9}$	
		$\frac{8}{27}$

Understanding the perimeter ratio of two similar rectangles
Ex 1: Figures A and B
are similar

Understanding the area ratio of two similar circles

Ex 2 :

Application of Similar Triangles

The 3 great pyramids of Egypt are Khufo, Khafre, Menkaure

Their heights were unknown for over 2000 years, until about 600 BC , when Thales of Miletus, a Greek Mathematician calculated it.

Height of Pyramid (Imaginary Post) $=$
Thales Height Thales Shadow

Thales Hetght Thales Shadow
$\frac{2 \text { paces }}{3 \text { paces }}$
(In his days they were measuring in cubits instead of m; 1 cubit $=44.16 \mathrm{~cm}$ which is about 1 arm length)

He measured the length of the base and the length of the shadow. He then placed a 2 m stick at the end of the shadow and measured its shadow, it was 4 m long.

Since the sun creates equal angles on the ground, we have similar triangles: $\triangle A B C \sim \triangle T U B$;

Since the sun creates equal angles on the ground, we have similar triangles: $\triangle A B C \sim \Delta T U B$;
$U V=230 / 2=115$;
so $U B=115+179=294 m$

Practice: page 218 \# 6-10

